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First-order phase transition with a logarithmic singularity in a model with absorbing states
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Theoretische Physik, Fachbereich 10, Gerhard-Mercator-Universita¨t Duisburg, D-47048 Duisburg, Germany

~Received 18 August 2000; published 20 December 2000!

Recently, Lipowski@Phys. Rev. E62, 4401~2000!# investigated a stochastic lattice model which exhibits a
discontinuous transition from an active phase into infinitely many absorbing states. Since the transition is
accompanied by an apparent power-law singularity, it was conjectured that the model may combine features of
first- and second-order phase transitions. In the present work it is shown that this singularity emerges as an
artifact of the definition of the model in terms of products. Instead of a power law, we find a logarithmic
singularity at the transition. Moreover, we generalize the model in such a way that the second-order phase
transition becomes accessible. As expected, this transition belongs to the universality class of directed perco-
lation. @S1063-651X~00!13512-3#
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I. INTRODUCTION

In nonequilibrium statistical physics the study of pha
transitions continues to attract considerable attention@1#. In
this context, continuous phase transitions into absorb
states have been of particular interest@2#. It is believed that
absorbing-state transitions can be categorized into unive
ity classes, the most prominent ones being directed perc
tion @3# and the so-called parity-conserving universality cla
@4#. On the other hand, various nonequilibrium models
known to exhibit a discontinuous phase transition@5#. Espe-
cially in one spatial dimension, first-order transitions requ
a very robust mechanism in order to stabilize the orde
phases. As suggested in Ref.@6#, first-order transitions in one
dimension should be impossible under certain generic co
tions if one of the ordered phases fluctuates.

Recently, Lipowski and co-workers introduced a mod
with infinitely many absorbing states which exhibits a fir
order transition from a fluctuating active state into an abso
ing phase@7,8#. Remarkably, this transition takes place ev
in one spatial dimension. Unlike previously investigat
models, the dynamic rules involveproductsof real-valued
local variables. Surprisingly, the first-order transition is a
companied by an apparent power-law singularity of the s
tionary particle density, suggesting that the model may co
bine features of continuous and discontinuous ph
transitions. This observation collides with the commonly a
cepted belief that there are no power-law singularities
first-order phase transitions. The aim of this work is to stu
the origin of this unusual type of singularity in more deta

The model considered in Ref.@8# is defined as follows.
Each sitei of a given lattice is connected ton neighboring
sites j P^ i &. Each bond carries a real-valued variablewi j
5wji P(21/2,11/2). The set of all bond variables specifi
the state of the system. A site is considered to be active if
product of all adjacent bond variables is smaller than a c
tain control parameterr:

)
j P^ i &

wi , j,r . ~1!

Initially all bond variables are uniformly distributed betwee
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21/2 and11/2. The model evolves by random sequent
updates according to the following dynamic rules. For ea
update attempt a site is randomly selected. If it is active,
adjacent bond variables are replaced by new random n
bers distributed between21/2 and11/2. Lipowski consid-
ered the case ofn54 neighbors using a one-dimension
triangular ladder and a two-dimensional square lattice~see
Fig. 1!.

Due to the use of real-valued local variables, the mo
has infinitely many absorbing states. Moreover, the dyna
rules are invariant under certain gauge transformations.
example, we may invert the sign of all bond variables alo
a closed contour without changing the pattern of activity in
given configuration. The implications of this type of gau
invariance are not yet fully understood.

In order to understand the existence of a phase transit
let us consider two extremal situations. On the one hand,
r .22n it is obvious that all sites are active during the ent
temporal evolution. On the other hand, forr ,0 there is a
finite probability to generate bond variables withuwi , j u
,2n21ur u. This means that certain pairs of sitesi and j re-
main inactive forever, irrespective of the values of the oth
bond variables. Thus, the process continuously ‘‘switch
off’’ certain pairs of sites, and therefore approaches an
sorbing configuration within an exponentially short time.

Interestingly, for r 50 the model is still in the active
phase with a nonvanishing stationary density of active s
r0.0 ~see Fig. 2!. Thus the spreading process undergoe
discontinuousphase transition atr 50. Even more surpris-

FIG. 1. Lattice geometries used in Ref.@8# Left: one-
dimensional triangular ladder, interpreted as a linear chain w
next-to-nearest-neighbor interactions. Right: two-dimensio
square lattice.
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ingly, the stationary densityrs(r ) does not decrease linear
versusr0 as r→0; instead the slope of the curve seems
diverge. This observation led Lipowski to the conjecture t
the model may combine features of discontinuous and c
tinuous transitions, calling for a power-law behavior of t
forms

rs~r !.r01arb for r>0,
~2!

rs~r !50 for r ,0,

where a is a certain factor, andb is the critical exponent
associated with the order parameterr. Performing numerical
simulations Lipowski found the estimatesr050.314827 and
b50.66(3) in one dimension, andr050.358 and b
50.58(1) in two dimensions, respectively. Moreover, he o
served that the dynamical critical exponentz5n' /n i.0.2 is
very small. In the present paper we propose a different
planation of the diverging slope in Fig. 2 based on the f
lowing arguments:

~1! The singularity of the slope in Fig. 2 emerges as
artifact of the definition of activity in terms of a produc
While the bond variables are uniformly distributed, the pro
ability distribution of the product diverges forr→0, leading
to a singularity of the slope. An explicit formula is derive
showing that the slope diverges logarithmically asr→0. In
particular, there is no power law of the form of Eq.~2!.

~2! Redefining the control parameter, the model display
conventional first-order phase transition without a diverg
slope. Moreover, there is no diverging length scale at
transition.

~3! Since for r ,0 the system is immediately driven to
ward one of the absorbing states, the continuous trans
may be thought of as being hidden in the inaccessible reg
r ,0. In order to support this point of view, we generali
the model in such a way that the continuous transition
shifted to the accessible regionr>0. As expected, the tran
sition belongs to the universality class of directed perco
tion.

FIG. 2. Stationary densityrs as a function of the parameterr in
one ~1D! and two ~2D! spatial dimensions. The inset zooms t
region where the curves terminate. The terminal points atr(0)
5r0 are marked by bold dots.
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II. LOGARITHMIC SINGULARITY

In this section we demonstrate that the singularity of
slope in Fig. 2 is a consequence of the multiplicative defi
tion of activity in Eq.~1!. To this end we consider thereac-
tivation probability W(r ) that a site remains active after a
update. In a spreading process, the reactivation probab
provides a good measure of the effective spreading rate
which nearest neighbors will be activated. In most spread
processes near the transition, the reactivation probability
ies to lowest order linearly with the control parameter of t
model. Therefore, a power law of the formrs;@W(r )
2W(r c)#b immediately implies the same power law in term
of the control parameterrs;(r 2r c)

b. In the present model
however, W(r ) is a nonlinear function at the transition.
Therefore, it does matter whetherr or W(r ) is used as con-
trol parameter.

Our explanation relies on the assumption thatW(r ) is the
‘‘true’’ control parameter of the model. In terms ofW(r ) the
model exhibits a regular first-order phase transition with
singularity, i.e., the density varies linearly withW(r )
2W(r c). The apparent singularity in terms ofr originates
solely in the nonanalytic behavior of the functionW(r ) in
the limit r→0.

In order to computeW(r ) let us considern independent
random numbersz1 ,z2 , . . . ,zn drawn from a flat distribution
between21/2 and11/2. Clearly, the probabilityP(1)(z)dz
to find one of these random numbers betweenz andz1dz is
constant foruzu<1/2. However, the productz5) i 51

n zi of the
random numbers is not uniformly distributed. The probab
ity distribution P(n)(z) can be computed iteratively by

P(k11)~z!5E
21/2

11/2

dz8E
21/2k

11/2k

dz9P(k)~z8!d~z2z8z9!

5E
21/2

11/2

dz8
1

z8
P(k)~z/z8!Q~z82uzu2k!

52E
22kuzu

11/2

dz8
1

z8
P(k)~ uzu/z8!, ~3!

with P(1)(z)51, leading to the exact result

P(n)~z!5
~22!n21

~n21!!
~ lne2

nuzu!(n21). ~4!

Thus the probabilityW(r ) to reactivate an updated site
given by

W~r !5E
21/16

r

dzP(4)~z!5
1

2
1r S 828~ lne16ur u!

14~ lne16ur u!22
4

3
~ lne16ur u!3D . ~5!

For small values ofr, we therefore expect the stationa
density to be given by
9-2
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rs~r !.r01AS W~r !2
1

2D for r>0,

~6!
rs~r !50 for r ,0,

whereA is a fit parameter. This formula replaces the pow
law in Eq. ~2!, implying that the slope ofrs(r ) diverges
logarithmically as2(lne16ur u)3 for r→0 in any dimension.
This explains why Lipowski’s results in one and two dime
sions are so similar.

In order to support the validity of Eq.~6!, we performed
Monte Carlo simulations~see Table I!. Our estimate for the
stationary densityr0 in one dimension deviates slightly from
the value quoted in Ref.@8#. This deviation may be explaine
as follows. On the one hand, the random number gener
plays a crucial role. Since most algorithms internally gen
ate an integer random number, the output is often quant
in steps of about 1028, leading to wrong results ifr is very
small. On the other hand, the machine precision itself lim
the accuracy. This problem can be avoided by stor
log(uwij u) and sgn(wi j ) instead ofwi , j and turning the produc
in Eq. ~1! into a sum of logarithms. Taking these technic
subtleties into account, we obtain a different estimate.

As shown in Fig. 3, the results for the stationary dens
in one and two dimensions are very similar. Moreover,
small values ofr the curvature of the lines is in fair agree
ment with the theoretical prediction of Eq.~6!. In any case,
the possibility of a power-law singularity can be ruled o
As expected, there is no singularity ifrs is plotted against
W(r )2W(0) ~see Fig. 4!.

TABLE I. Numerical estimates.

d51 d52

Number of sites 106 10002

Simulation time 104 . . . 106 104 . . . 106

Stationary densityr0 0.31512~3! 0.35905~2!

Fit parameterA 1.4~1! 1.1~1!

FIG. 3. Log-log plot of the stationary densityrs(r ) as a function
of the parameterr, compared to the~vertically shifted! function
W(r )21/2. The dotted straight line visualizes the failure of t
power-law conjecture proposed in Ref.@8#.
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III. CONTINUOUS TRANSITION
IN A GENERALIZED MODEL

As outlined in Sec. I, the first-order phase transition ar
50 is induced by frozen pairs of inactive sites. Since for a
negative value ofr there is a finite probability to generat
such pairs during the temporal evolution, the system
driven into one of the absorbing states within an expon
tially short time. Roughly speaking, the spreading proces
switched off as soon asr ,0. Thus, the continuous trans
tion, which is expected to exist in ordinary spreading p
cesses, may be thought of as being hidden in the inacces
region r ,0.

In order to support this point of view, we generalize t
model in such a way that the continuous transition is shif
to the accessible regionr>0. This can be done by introduc
ing two control parametersr 1 andr 2, and considering a site
to be active if the product of adjacent bond variables lies
the interval (2r 1 ,r 2). Clearly, this model includes the origi
nal one as a special case. Moreover, the phase diagra
symmetric under exchanger 1↔r 2. In order to avoid frozen
pairs of sites, we will assume that both parameters are p
tive. Obviously, for very small values ofr 1 and r 2 the

FIG. 4. Stationary densityrs as a function ofW(r )21/2. As can
be seen, there is no singularity near the transition.

FIG. 5. Phase diagram of the generalized model. The s
~dashed! line indicates the phase transition line in one~two! dimen-
sion~s!.
9-3
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HAYE HINRICHSEN PHYSICAL REVIEW E 63 016109
spreading probability is so small that the model will be in t
absorbing phase. Increasingr 1 andr 2, we observe a continu
ous transition from the absorbing to the active phase,
shown in Fig. 5.

We verified that the critical behavior along the entire tra
sition line belongs to the universality class of directed p
colation. Note that theZ2 symmetry along the diagonalr 1
5r 2 does not lead a different type of transition since it is n
a symmetry of the order parameter.

IV. CONCLUSIONS

The common feature of the models introduced by L
owski and co-workers is the use of products of real-valu
local variables in the definition of the dynamic rules. T
s
e,

,

v.
.

.
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models display very interesting phenomena which are u
ally not observed in models with linear local rules. As w
showed in the present paper, the use of nonlinear rule
crucial, since nonlinear functions of random numbers m
not be uniformly distributed. A special situation emerges
the distribution exhibits a singularity. In this case a tin
change of the control parameter may lead to a dram
variation of the order parameter. For the model investiga
in Ref. @8#, such a singularity is responsible for the divergin
slope in Fig. 2. Thus, in contrast to a previous conjecture,
model does not combine features of first- and second-o
phase transitions. In particular, the model is not critical, a
the correlation length remains finite asr→0. We expect that
similar phenomena may emerge whenever the dynamic r
are defined in terms of nonlinear functions of real-valu
random variables.
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