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First-order phase transition with a logarithmic singularity in a model with absorbing states
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Recently, LipowskiPhys. Rev. B62, 4401(2000] investigated a stochastic lattice model which exhibits a
discontinuous transition from an active phase into infinitely many absorbing states. Since the transition is
accompanied by an apparent power-law singularity, it was conjectured that the model may combine features of
first- and second-order phase transitions. In the present work it is shown that this singularity emerges as an
artifact of the definition of the model in terms of products. Instead of a power law, we find a logarithmic
singularity at the transition. Moreover, we generalize the model in such a way that the second-order phase
transition becomes accessible. As expected, this transition belongs to the universality class of directed perco-
lation. [S1063-651X00)13512-3
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I. INTRODUCTION —1/2 and+1/2. The model evolves by random sequential
updates according to the following dynamic rules. For each
In nonequilibrium statistical physics the study of phaseupdate attempt a site is randomly selected. If it is active, all
transitions continues to attract considerable atteritignin  adjacent bond variables are replaced by new random num-
this context, continuous phase transitions into absorbingers distributed between 1/2 and+1/2. Lipowski consid-
states have been of particular interf&t It is believed that  ered the case ofi=4 neighbors using a one-dimensional
absorbing-state transitions can be categorized into universariangular ladder and a two-dimensional square lattgmse
ity classes, the most prominent ones being directed percolgig. 1).
tion [3] and the so-called parity-conserving universality class Due to the use of real-valued local variables, the model
[4]. On the other hand, various nonequilibrium models arenas infinitely many absorbing states. Moreover, the dynamic
known to exhibit a discontinuous phase transitish Espe-  rules are invariant under certain gauge transformations. For
cially in one spatial dimension, first-order transitions requireexample, we may invert the sign of all bond variables along
a very robust mechanism in order to stabilize the ordered closed contour without changing the pattern of activity in a
phases. As suggested in Rd], first-order transitions in one given configuration. The implications of this type of gauge
dimension should be impossible under certain generic condinvariance are not yet fully understood.
tions if one of the ordered phases fluctuates. In order to understand the existence of a phase transition,
Recently, Lipowski and co-workers introduced a modellet us consider two extremal situations. On the one hand, for
with infinitely many absorbing states which exhibits a first-r>27" it is obvious that all sites are active during the entire
order transition from a fluctuating active state into an absorbtemporal evolution. On the other hand, o0 there is a
ing phase7,8]. Remarkably, this transition takes place evenfinite probability to generate bond variables with; ;|
in one spatial dimension. Unlike previously investigated<zn—1|r|_ This means that certain pairs of siteandj re-
models, the dynamic rules involveroductsof real-valued  main inactive forever, irrespective of the values of the other
local variables. Surprisingly, the first-order transition is ac-pond variables. Thus, the process continuously “switches
companied by an apparent power-law singularity of the staoff” certain pairs of sites, and therefore approaches an ab-
tionary particle density, suggesting that the model may comsorhing configuration within an exponentially short time.
bine features of continuous and discontinuous phase Interestingly, forr=0 the model is still in the active
transitions. This observation collides with the commonly ac-phase with a nonvanishing stationary density of active sites
cepted belief that there are no power-law singularities inpo>0 (see Fig. 2 Thus the spreading process undergoes a

first-order phase transitions. The aim of this work is to studygiscontinuousphase transition at=0. Even more surpris-
the origin of this unusual type of singularity in more detail.

The model considered in Refi8] is defined as follows.

Each sitei of a given lattice is connected t neighboring

sitesj e(i). Each bond carries a real-valued variablg M
=wj; € (—1/2,+ 1/2). The set of all bond variables specifies

the state of the system. A site is considered to be active if the

product of all adjacent bond variables is smaller than a cer- %
tain control parameter.

H Wi ;<. (1) FIG. 1. Lattice geometries used in Ref8] Left: one-
jey dimensional triangular ladder, interpreted as a linear chain with
next-to-nearest-neighbor interactions. Right: two-dimensional
Initially all bond variables are uniformly distributed between square lattice.
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1 T Il. LOGARITHMIC SINGULARITY

In this section we demonstrate that the singularity of the
slope in Fig. 2 is a consequence of the multiplicative defini-
tion of activity in Eq.(1). To this end we consider theac-
tivation probability W(r) that a site remains active after an
update. In a spreading process, the reactivation probability
provides a good measure of the effective spreading rate by
which nearest neighbors will be activated. In most spreading
processes near the transition, the reactivation probability var-
ies to lowest order linearly with the control parameter of the
model. Therefore, a power law of the forms~[W(r)
—W(r.)]? immediately implies the same power law in terms
of the control parametgr.~ (r —r.)”. In the present model,
00 061 0.02 however, W(r) is a nonlinear function at the transition.

' ' Therefore, it does matter whetheior W(r) is used as con-
trol parameter.

FIG. 2. Stationary density as a function of the parametein Our explanation relies on the assumption 4t ) is the
one (1D) and two (2D) spatial dimensions. The inset zooms the “true” control parameter of the model. In terms @{(r) the
region where the curves terminate. The terminal pointp@)  model exhibits a regular first-order phase transition without
= po are marked by bold dots. singularity, i.e., the density varies linearly withV(r)
—W(r.). The apparent singularity in terms oforiginates
solely in the nonanalytic behavior of the functid(r) in

ingly, the stationary densitys(r) does not decrease linearly
versuspy asr—0; instead the slope of the curve seems to 7
diverge. This observation led Lipowski to the conjecture thalIhe limit r —0. . .

the model may combine features of discontinuous and con- In order to computa¥/(r) let us considen independent

tinuous transitions, calling for a power-law behavior of therarldom numbers, ,z,, .. . Z drawn from af'?.‘ distribution
g P between—1/2 and+ 1/2. Clearly, the probabilitP)(z)dz

forms . )
to find one of these random numbers betweamdz+dz is
ps(r)=potarf for r=0, constant follz| < 1/2. However, the produa=11{",z of the
(2)  random numbers is not uniformly distributed. The probabil-
ps(r)=0 for r<0, ity distribution P("(z) can be computed iteratively by
wherea is a certain factor, ang@ is the critical exponent 1 "
i . : : 1

a_ssoma}ted Wl_th the c_)rder parame,bt_erPerformmg numerical pk+ 1)(2):f dz’f+ dz’PM(z')8(z—2'2")
simulations Lipowski found the estimatpg=0.314827 and -1/2 —1

B=0.66(3) in one dimension, ang,=0.358 and

=0.58(1) in two dimensions, respectively. Moreover, he ob- [t

served that the dynamical critical exponentv, /v=0.2 is J

very small. In the present paper we propose a different ex-

planation of the diverging slope in Fig. 2 based on the fol- +1/2 1

lowing arguments: :Zf . dz—PWM(|z|/z"), 3
(1) The singularity of the slope in Fig. 2 emerges as an —2 z

21
dz—PW(z/z')0(z' —|z|2%)
-12 7

artifact of the definition of activity in terms of a product.
While the bond variables are uniformly distributed, the prob-with P)(z)=1, leading to the exact resuit
ability distribution of the product diverges for—0, leading
to a singularity of the slope. An explicit formula is derived,
showing that the slope diverges logarithmicallyrasO. In
particular, there is no power law of the form of E@).

(2) Redefining the control parameter, the model displays
conventional first-order phase transition without a divergin

(_2)nfl

PUE = or

(INg2"|z)) ("1, 4

Fhus the probabilityW(r) to reactivate an updated site is

slope. Moreover, there is no diverging length scale at th iven by
transition. } 1

(3) Since forr<0 the system is immediately driven to- W(r):f dzP4(z)==+r| 8—8(In,16|r|)
ward one of the absorbing states, the continuous transition -1/16 2

may be thought of as being hidden in the inaccessible region 4

r<0. In order to support this point of view, we generalize +4(Ing16/r|)?— —(Ine16|r|)3). (5)
the model in such a way that the continuous transition is 3

shifted to the accessible regior=0. As expected, the tran-

sition belongs to the universality class of directed percolafor small values ofr, we therefore expect the stationary
tion. density to be given by
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TABLE I. Numerical estimates. 0.5
d=1 d=2

Number of sites 19 100G Paw(®)
Simulation time 16...10 10*...10 m

Stationary density, 0.315123) 0.35905%2) 04 -

Fit parameterA 1.4(1) 1.1(1) ’ D

L
1
ps(r)=po+Al W(r)— > for r=0,
(6) 041 . . .
ps(r)=0 for r<o, ~o 0.05 0.1 0.15 02
W(r)-1/2

whereA is a fit parameter. This formula replaces the power
law in Eq. (2), implying that the slope opg(r) diverges FIG. 4. Stationary density, as a function ofN(r) —1/2. As can
logarithmically as —(In916|r|)3 for r—0 in any dimension. pe seen, there is no singularity near the transition.

This explains why Lipowski’s results in one and two dimen-
sions are so similar.

In order to support the validity of Ed6), we performed
Monte Carlo simulationgsee Table)l Our estimate for the  As outlined in Sec. I, the first-order phase transitiom at
stationary densityy in one dimension deviates slightly from =0 is induced by frozen pairs of inactive sites. Since for any
the value quoted in Ref8]. This deviation may be explained negative value of there is a finite probability to generate
as follows. On the one hand, the random number generat®uch pairs during the temporal evolution, the system is
plays a crucial role. Since most algorithms internally generdriven into one of the absorbing states within an exponen-
ate an integer random number, the output is often quantizetklly short time. Roughly speaking, the spreading process is
in steps of about 10°, leading to wrong results if is very  switched off as soon as<0. Thus, the continuous transi-
small. On the other hand, the machine precision itself limitgion, which is expected to exist in ordinary spreading pro-
the accuracy. This problem can be avoided by storingesses, may be thought of as being hidden in the inaccessible
log(jw;|) and sgngv;;) instead ofw; ; and turning the product regionr<0. . _ . _
in Eq. (1) into a sum of logarithms. Taking these technical N order to support this point of view, we generalize the
subtleties into account, we obtain a different estimate. model in such a way that the continuous transition is shifted

As shown in Fig. 3, the results for the stationary density!© the accessible regiar=0. This can be done by introduc-

in one and two dimensions are very similar. Moreover, for"d tWo control parametens, andr,, and considering a site
small values off the curvature of the lines is in fair agree- to be active if the product of adjacent bond variables lies in

ment with the theoretical prediction of E(6). In any case, the interval (_rl’rZ).‘ Clearly, this model includes the_origi- .
the possibility of a power-law singularity can be ruled out. nal one as a special case. Moreover, the phase diagram is

As expected, there is no singularity gf, is plotted against Symmet”‘? under exchangq<—>r2. In order to avoid frozen .
W(r)—W(0) (see Fig. 4 pairs of sites, we will assume that both parameters are posi-

tive. Obviously, for very small values of; andr, the

IIl. CONTINUOUS TRANSITION
IN A GENERALIZED MODEL
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FIG. 3. Log-log plot of the stationary densipy(r) as a function

of the parameter, compared to thevertically shifted function FIG. 5. Phase diagram of the generalized model. The solid
W(r)—1/2. The dotted straight line visualizes the failure of the (dashedline indicates the phase transition line in ditwo) dimen-
power-law conjecture proposed in REB). sion(s).

016109-3



HAYE HINRICHSEN PHYSICAL REVIEW E 63 016109

spreading probability is so small that the model will be in themodels display very interesting phenomena which are usu-
absorbing phase. Increasingandr,, we observe a continu- ally not observed in models with linear local rules. As we
ous transition from the absorbing to the active phase, ashowed in the present paper, the use of nonlinear rules is
shown in Fig. 5. crucial, since nonlinear functions of random numbers may
We verified that the critical behavior along the entire tran-not be uniformly distributed. A special situation emerges if
sition line belongs to the universality class of directed perthe distribution exhibits a singularity. In this case a tiny
colation. Note that th&, symmetry along the diagonal change of the control parameter may lead to a dramatic

=r, does not lead a different type of transition since it is notvariation of the order parameter. For the model investigated
a symmetry of the order parameter in Ref.[8], such a singularity is responsible for the diverging

slope in Fig. 2. Thus, in contrast to a previous conjecture, the
model does not combine features of first- and second-order
phase transitions. In particular, the model is not critical, and
the correlation length remains finite es-0. We expect that

The common feature of the models introduced by Lip-similar phenomena may emerge whenever the dynamic rules
owski and co-workers is the use of products of real-valuedare defined in terms of nonlinear functions of real-valued
local variables in the definition of the dynamic rules. Therandom variables.

IV. CONCLUSIONS
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